
Dariusz Barbucha Ngoc Thanh Nguyen John Batubara *Editors*

New Trends in Intelligent Information and Database Systems

Contents IX

Part II:	Intelligent	Computational	Methods in	Information
	Systems			

Finger Knuckle Print Identification with Hierarchical Model of Local Gradient Features	7:
Type-Reduction for Concave Type-2 Fuzzy Sets	81
Evaluating Customer Satisfaction: Linguistic Reasoning by Fuzzy Artificial Neural Networks	91
Hybrid Particle Swarm Optimization Feature Selection for Crime Classification	101
Identification of Shill Bidding for Online Auctions Using Anomaly Detection	111
Investigation of Time Interval Size Effect on SVM Model in Emotion Norm Database	121
Part III: Semantic Web, Social Networks and Recommendation Systems	
Twitter Ontology-Driven Sentiment Analysis	131
A Virtual Reality Based Recommender System for Interior Design Prototype Drawing Retrieval	141
Adaptation of Social Network Analysis to Electronic Freight Exchange Konrad Fuks, Arkadiusz Kawa, Bartłomiej Pierański	151
Social Users Interactions Detection Based on Conversational Aspects Rami Belkaroui, Rim Faiz, Aymen Elkhlifi	161
Measuring Information Quality of Geosocial Networks	171

Part IV: Cloud Computing and Intelligent Internet Systems	
A Secure Non-interactive Deniable Authentication Protocol with Certificates Based on Elliptic Curve Cryptography Yu-Hao Chuang, Chien-Lung Hsu, Wesley Shu, Kevin C. Hsu, Min-Wen Liao	183
An Ad Hoc Mobile Cloud and Its Dynamic Loading of Modules into a Mobile Device Running Google Android Filip Maly, Pavel Kriz	191
Methodological Approach to Efficient Cloud Computing Migration Petra Marešová, Vladimír Soběslav, Blanka Klímová	199
High Level Models for IaaS Cloud Architectures	209
Lower Layers of a Cloud Driven Smart Home System	219
Cloud – Based Solutions for Outdoor Ambient Intelligence Support Peter Mikulecky	229
Internet of Things Service Systems Architecture Patryk Schauer, Grzegorz Debita	239
An IoT Based Service System as a Research and Educational Platform Thomas Kimsey, Jason Jeffords, Yassi Moghaddam, Andrzej Rucinski	249
Part V: Knowledge and Language Processing	
Virtual Engineering Objects: Effective Way of Knowledge Representation and Decision Making	261
Finite-State Transducers with Multivalued Mappings for Processing of Rich Inflectional Languages	271
The Implementation of the Perceptual Memory of Cognitive Agents in Integrated Management Information System	281
Consensus with Expanding Conflict Profile	291

Finite-State Transducers with Multivalued Mappings for Processing of Rich Inflectional Languages

Ualsher Tukeyev¹, Marek Miłosz², and Zhandos Zhumanov¹

¹ Al-Farabi Kazakh National University, Almaty, Kazakhstan {ualsher.tukeyev,z.zhake}@gmail.com

² Lublin University of Technology, Lublin, Poland marekm@cs.pollub.pl

Abstract. This paper proposes a processing for rich inflectional languages such as Russian and Kazakh, based on finite state transducers with multivalued mappings. We propose to simplify grammar of inflectional languages and use multivalued mappings. An advantage of finite state transducers with multivalued mappings proposed in this paper is that it automatically generates possible alternatives of words' grammatical characteristics, while in existing rule-based technologies alternatives are written by hand. Ambiguity of grammatical characteristics is solved by comparing alternative grammatical characteristics between adjacent words in the source sentence and matching grammatical characteristics are selected. Here an advantage of proposed method should be noted, it does not require explicit description of matching agreements for grammatical characteristics of adjacent words in a sentence, as it is done in existing rule-based methods.

Keywords: Finite-state transducers, multivalued mappings, computational intelligence, machine translation, natural language processing.

1 Introduction

In the field of languages processing (machine translation in particular) the problem of quality still remains a key topical issue.

In this paper, in line with the development of efficient technologies for languages processing, we propose using of the multivalued mappings theory [1]. The theory of multivalued mappings has been actively developed in the past 30 years, especially in game theory, theory of extreme problems, mathematical economics [2]. In the field of language processing there are examples of using the method of mappings in machine translation [3, 4], but they were not multivalued mappings. Proposed method is closed to finite-state transducers (FST) [5, 6] and especially close to a kind of FST transducers named *p*-subsequential transducers which allow ambiguity of final output strings to be associated with each final state [7]. Also there are many papers using FST for machine translation, in particular, for morphology of agglutinative languages [8, 9, 10, 11]. Approach proposed in this paper is based on simplifying morphology of investigated languages' words for improving of computational processing of machine translation by using of finite state transducers with multivalued mappings.